Terms, Terms, Terminology – What’s the proper name for a floor that gets rid of static?

Terms, Terms, Terminology – What’s the proper name for a floor that gets rid of static?

[10 min read]

Have you been asked to select a flooring material that’s supposed to eliminate or minimize static charges on people when they walk on the floor?

What do you call such a floor?

Section 09 61 36 of The Construction Specifications Institute calls a floor designed to prevent static discharge a Static-Resistant Flooring Treatment. That makes sense: the purpose of the floor is to resist static.

Wait: doesn’t it also make sense to describe the floor as static control? Control as in eliminate, mitigate, inhibit? You guessed it: another CSI category (09660) is called Static Control Flooring.

What’s the difference between static control and static resistant? Before you answer here’s another CSI category: 09 65 33. This category is called Conductive Resilient Flooring. Already we’ve got three different terms for walking surfaces that eliminate static on human beings.

In addition to those three, there is antistatic flooring. Also spelled anti static flooring or sometimes anti-static flooring. Other descriptive terms include conductive, static dissipative, grounded, static-free, electrostatic discharge (ESD) flooring, ESD safe, shock resistant, static mitigating, non-static and low static generating.

In their internet searches, some people resort to using application-oriented terms in the hopes of whittling down the possible options based on suitability. In the Google (or Yahoo or Bing) search box, they’ll plug in words like: data center flooring, hospital operating room flooring, cleanroom tile, MRI suite flooring or flooring for handling explosives. You could have a field day thinking up all the possible word combinations for this type of walking surface.

Several years ago we actually created an Excel spread sheet that contained over 2000 possible word combinations for something that is supposed to do the following:

• Permanently prevent static on people who are standing or moving
• Be certifiable to some standard that verifies safety and performance
• Meet the requirements of the space, environment and application

We hear questions and comments about this dilemma every day.

Confusion about static-control terminology is the number one reason we get calls from end-users asking us to test their ESD flooring solution because something just “doesn’t seem right.”

Recently, we were asked to test an anti-static high pressure laminate (AKA HPL) installed on raised access flooring panels in a semiconductor fabrication facility. The client believed their maintenance department or chemicals the maintenance team used had damaged their HPL floor because the floor was no longer antistatic. As a result, extremely low levels of static discharge — lower voltages than can be felt by a person – were zapping static-sensitive parts.

As it turned out, the HPL floor was incapable of discharging static on people as they walked. The floor lacked the most basic attribute required to transport electricity from one place to another: the HPL floor contained no electrically conductive components, such as carbon, graphite, silver or gold. Without electrical conductivity, it is impossible for electricity to move through a material. As a result, electricity was getting stuck. Static charges, generated when people walked, stayed on the people and on the floor. We call that kind of electricity – the kind of electrical charge that stays in place, is stagnant, that doesn’t move – static electricity.

The HPL floor was insulative – that is, the opposite of conductive. Think of an electrical plug. There’s a reason you don’t get a shock when you plug your hair dryer into an AC electrical outlet. It’s because the plug is made of an insulative plastic material. If the plug were made with conductive materials, electricity would flow through it. And you would get a shock.

The static-control floor they thought they were buying was not the floor they received.

So how do you find this elusive floor with no universal name? A floor that, if you don't describe it correctly, could get you the opposite of what you wanted?

You can start by doing your homework. There are plenty of resources to help you sort through all the confusing technical terms. The ESD Association is an organization that, in their words, is “dedicated to advancing the theory and practice of electrostatic discharge (ESD) avoidance.” This membership association provides training and certification and hosts events for people interested in learning more about ESD. You can hire a consulting firm, like Dangelmayer and Associates whose “dream team” of researchers, engineers, and ESD experts can custom-tailor an ESD program that best suits your industry and application. You can consult a glossary of ESD terms, read articles and blog posts, listen to podcasts, or watch videos about electrostatic discharge.

Terms, terms, terminology – and standards

Here’s the thing: it doesn’t really matter what you call the floor. We know what you’re thinking – wha–? Doesn’t matter? You’re telling us to invest in a floor that might not solve our problem?

No. Of course not. That’s not what we’re saying at all.

All those confusing descriptors and technical terms are precisely that: descriptors and technical terms. Do they all mean the same thing? No. But, again, it really doesn’t matter.

What does matter is, first, you know the standards. ESD Standards are industry-specific. It’s crucial to familiarize yourself with the standards set by your particular industry for your application. Learn about ESD standards and standard test methods here.

Standards cover two attributes: resistance and walking body voltage (aka charge generation).

Electrical resistance determines how quickly – or slowly – the floor should transport charges to ground. The higher the resistance of the floor, the slower charges will drain from people and the walking surface to ground. The lower the resistance (higher conductivity) the faster charges will move. Some industries – munitions, for example – prefer high conductivity/low resistance. Other industries – telecom, FAA, PSAPs, banks and other end-user industries – require static dissipative flooring. Learn more about dissipative and conductive flooring here.

The second attribute is charge generation – or how much static the floor generates when people walk. Charge generation is distinct from resistance/conductivity. In order to draw static away from people and prevent static from building on people, the floor must be grounded, which requires having some degree of conductivity. But, as long as the floor measures below 1.0 x 10E9, it meets one of the two critical parameters for most static control applications.

A floor’s charge generation properties represent the second and more important performance parameter. Electronics manufacturing and handling operations require floors to produce no more than 100 volts of static on people wearing protective footwear. End-user spaces like server rooms require that floors generate no more than 500 volts. Again, the amount of allowed static generation is industry and application specific. Learn more about static generation (walking body voltage) here.

Standard Test Methods (STM)

Resistance and charge generation are measured following standard test methods required in ANSI/ESD S20.20, the standard set for the electronics manufacturing and handling facilities.

As we’ve said, the standards, which determine what the measurements should be, are industry specific. Electronics manufacturing and handling follow ANSI/ESD S20.20. Telecom spaces (including PSAPs and critical call centers) follow Motorola R56 and ATIS 0600321. The FAA and facilities that use FAA flight equipment follow FAA 019f. These standards provide guidelines for suitable resistance and charge generation measurements. Again, they are all different. Learn about standards for electronics manufacturing and handling, data centers, telecom and PSAPs, FAA, healthcare, DOD, Army Corps of Engineers here

 Standard Test Methods describe the way you conduct the tests. For most applications, Standard Test Methods follow methods in ANSI/ESD S20.20. A handful of industries, typically military and munitions, measure resistance differently, using higher applied voltages. Learn about test methods here.

Who’s wearing what kind of shoes?

The third thing you need to know is what kind of shoes people will wear in the space. Floors made with static-generating materials like PVC – certain vinyl and epoxies, for example – generate static unless everyone in the space wears special static-control shoes. These floors would not work in spaces like a 9-1-1 call center, FAA flight tower, bank or networked office where people wear regular street shoes. In those spaces, the floor should be made from low-generating materials like ESD carpet or rubber.  Learn more about footwear and ESD floors

These three things are crucial. They encompass all you need to know and questions you should ask. Always, always, always specify floors based on industry standards – never on terms or descriptions.

If you know what shoes people will wear, resistance and body voltage standards specific to your industry, and you’re familiar with standard test methods used to determine these attributes, you’re good to go.

If you need more information or would like help with your project, call us today: 617-923-2000.

Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on facebook
Facebook
Share on reddit
Reddit
Share on pinterest
Pinterest
Share on email
Email

About StaticWorx, Inc

All StaticWorx posts are written by our technical team and based on industry standards and specifications, test data, independent lab reports and other verifiable data. We provide ESD training and offer CEU credits to architects. If you’re interested in an ESD training session or architects’ Lunch and Learn workshop, give us a call: 617-923-2000.

More Blog Posts

Learning Center Articles

Play Video

StaticWorx high-performance static-control floors protect electronic components, explosives, and high-speed computers from damage caused by static electricity. ESD flooring is part of a system. Choices should always be based on objective, researched evidence. When you partner with us, we look at all possible items that may need to integrate with the floor, and, focusing on your goals and objectives, help you find the right floor for your application.

Play Video

StaticWorx high-performance static-control floors protect electronic components, explosives, and high-speed computers from damage caused by static electricity. ESD flooring is part of a system. Choices should always be based on objective, researched evidence. When you partner with us, we look at all possible items that may need to integrate with the floor, and, focusing on your goals and objectives, help you find the right floor for your application.