• Skip to main content
  • Skip to footer
GET IN TOUCH: Call: 617-923-2000 • Email: info@staticworx.com • Contact Us • Govt Capability Statement View Staticworx's profile on LinkedInView staticworx’s profile on Twitter View staticworx’s profile on Instagram View staticworx’s profile on Pinterest Visit Staticworx's YouTube channel Subscribe to the Staticworx feed

StaticWorx Learning Center

Your trusted source for ESD flooring advice. All your static-control flooring questions answered.

MENUMENU
  • ESD Flooring Choices
    • Government Capability Statement
    • Hospital, Healthcare and Lab ESD Flooring
      • StaticWorx/Dr. Schutz Floor Remake
      • Capability Statement
    • AmeriWorx Vinyl Tile
      • AmeriWorx ESD Solid Vinyl Tile
        • AmeriWorx Classics
        • AmeriWorx ROX
        • Environmental Information
        • Installation Instructions
        • Maintenance Guidelines
        • Post-Installation Maintenance Guidelines
        • Test Reports
      • 10 Reasons to Install Ameriworx SVT in Your Facility
      • Staticworx vs Armstrong ESD Vinyl Tile
      • Compare Imperfect Offshore Tile to AmeriWorx ESD Vinyl Tile
      • Meet Your Buy American Requirements
      • Precision Milled Conductive Flooring
      • VOCs? Heavy metals? What are you breathing from your ESD flooring?
      • Why Vinyl?
    • ShadowFX Carpet Tile
      • ShadowFX SD Carpet Tile
        • Patterns and Cubic Collections
        • Solids Collection
        • Parks Series
        • Peaks Collection
        • Treez Collection
        • Fields and Stone
        • Chenille Warp
        • Furrows II
        • Vermont Slate
          • 5 Reasons to Use Vermont Slate ESD Carpet Tile in 24/7 Critical Environments
        • Vermont Planx™
      • ShadowFX and TacTiles
        • Staticworx Grounding System for Floating Floors
      • 7 Ways ShadowFX ESD Carpet Tile Differs from Commercial Tile
      • ShadowFX Carpet Tile for Access Flooring Applications
      • ShadowFX and ESD Standards
      • Why is ShadowFX Carpet Static Dissipative and Not Conductive?​
      • Premium Helix Monofilament Fibers
      • Fiber Shape and Modification Ratio
    • ESD Urethane & Epoxy Coatings
      • GroundWorx™ Ultra: High-performing ESD Floor
        • CSI Specification
      • GroundWorx™ Basics: Value-engineered ESD Epoxy
      • Body Voltage and ESD Epoxy Coatings
      • Case Study: Generation 3 Epoxy
      • How to Ground ESD Epoxy and Urethane Coatings
    • Message Tiles
    • Rubber Flooring
      • Architectural SD Rubber
      • Eclipse EC Rubber
        • Eclipse Glue-Free (GF) Rubber
      • StatLock Interlocking SD Rubber
      • Voltage Protection Matting
        • Aisle-Safe Runners & Mats
        • GroundCom Matting
        • Switchboard Matting
        • Switchboard Matting: Military-Grade
      • Don’t Choose Your ESD Floor Until You Understand The Role of Footwear
      • Maintaining Rubber Tile and Sheet Flooring
      • Installing Rubber & Vinyl Products
        • Seam Welding for Cleanrooms
    • GroundLock Extreme Interlocking ESD Tiles
    • Access Floors
  • Installation/Maintenance
    • Adhesive-free Underlayments
    • Conductive Adhesives
      • GroundTack Conductive Adhesive
      • StatBond Wet-Set One-Part Acrylic Adhesive
      • StatBond Epoxy Two-Part Wet-Set Adhesive
      • StatBond™ Pressure-Sensitive (PS) Conductive Adhesive
    • Protecting ESD Floors from Moisture
    • TacTiles
    • Static-control Maintenance Supplies
    • Dr. Schutz Remake
  • Blog & Media
    • Blog
    • Statics Bursts Podcast
    • Static Shorts with Dave Long
    • Video Library
  • +Info
    • Architects' Hub
    • Contractors' Hub
    • Owners and Property Managers' Hub
    • ESD Flooring: The Basics
    • What Is ESD Flooring, How Does It Work, And How Do I Choose One?
    • Selecting and Specifying an ESD Floor
      • A Guide to ESD Flooring Selection
    • Installing and Maintaining ESD Floors
    • Technical Information
  • Resources
    • Article Hub
    • FAQs
    • Glossary
    • Video library
    • Archive
    • Standards and Test Methods
  • Lunch & Learn
  • Our Story
    • Contact StaticWorx
    • Government Capability Statement
    • Our History
    • The StaticWorx Green Story
    • Why Choose StaticWorx?
    • Subscribe to Our Newsletter

What Is ESD Flooring, How Does It Work, And How Do I Choose One?[23 min read, 7 min videos]

Leaderboard which shows four ESD flooring installations, the Staticworx logo, the text ESD Flooring Solutions - Click to view our product page and the tel number 617-923-2000
Ad which shows five ESD flooring installations, the Staticworx logo, the text ESD Flooring Solutions - Visit www.staticworx.com and the tel number 617-923-2000

THE GIST: What is ESD Flooring?
How Does ESD Flooring Work? How Do I Choose an ESD Floor? [23 min read, 7 min videos]

Illustration shows how conductive carbon fibers sweep static from shoe soles and transport charges to the underlying ground plane (conductive adhesive or underlayment).
Conductive fibers sweep static from shoe soles and transport charges to the underlying ground plane (conductive adhesive or underlayment); charges move across the ground plane to copper strips attached to an outlet or other type of earth ground.

Electrostatic Discharge (ESD) flooring protects electronics from damage caused by static electricity, which accumulates as people walk. Conductive elements such as carbon, graphite or metal-coated particles, distributed throughout the flooring material, give ESD floors electrical conductivity, and create an electrical pathway from the walking surface to ground.

ESD flooring standards are based on an ESD flooring/footwear combination. Some, but not all, ESD floors also prevent charge generation – i.e., static from accumulating as people walk. Thus, it’s critical to determine the type of footwear people will use in the space. When choosing an ESD floor, always test for both electrical resistance (STM7.1) and charge generation (STM97.2-2014).

A floor can be conductive and still generate enough static to damage electronics.

  • To be sure you choose the right ESD floor for your application, always evaluate:
    • The relevant electrical code
    • Industry standards for electrical resistance and charge generation (body voltage)
    • Independent test results: resistance (STM7.1); charge generation (STM97.2)
    • Footwear used in the space: ESD-protective footwear or regular street shoes
    • Any specific requirements for the application
    • The demands and constraints of the environment
    • Buyer goals and objectives
  • A static discharge as small as 20 volts, can damage or destroy microelectronics.
  • Static-control floors create a traceable path from the walking surface to ground.
  • To measure the resistance of a flooring material, we use test method ANSI STM7.1.
    • ANSI/ESD S20.20 requires electrical resistance to measure below 1x 10E9 ohms.
    • Motorola R56 and FAA 019f, require 1 x 10E6 ohms and below 1 x 10E9 ohms.
  • If people wear street shoes in the space, the floor must also prevent charge generation.
  • An ESD floor can be conductive and still generate static (fail to prevent body voltage).
    • To evaluate the potential for charge generation, use ANSI STM97.2-2014.

Post sections

Image of a Staticworx flooring installation in progress Section 1 What static electricity is
Section 2 How static-control floors work
How static-control floors provide a path to ground
Section 4 Electrical resistance and walking body voltage
Section 5 How to choose a static-control floor

Need additional information about specific ESD products? Visit our Staticworx product site.

Section 1

What is Static Electricity?

Generating a static charge diagramAll materials are made of atoms. In their normal state, atoms are electrically neutral, meaning they have an equal number of positively charged protons and negatively charged electrons.

Whenever two materials with different electrical characteristics rub together, or come into frictional contact—you drag a plastic comb through your hair, pet your cat, or walk across a floor—their surface molecules interact, forming an electrical bond.

Separating the materials creates friction. This frictional force pulls electrons away from one material and deposits them on the other, creating an electrical imbalance in both materials.

The material that lost electrons becomes positively charged. The material that gained electrons is left with a negative charge.

The technical term for this phenomenon is tribo-electrictrification, commonly known as static electricity.

Why is ESD – Electrostatic Discharge – a Problem?

When we think of static in our everyday lives, most of us think nuisance—static cling, particle attraction, irritating static shocks. To perceive these common effects of static electricity—to feel a static shock—the discharge must be at least 3500 volts. Though we may not enjoy feeling a 3.5 kV shock, it’s no big deal—to us.

A hand reaching for a door knob to demonstrate an ESD event - a shock from touching metal - that might be felt by a human Electronic components built or assembled in electronics manufacturing plants, circuit boards, hand-held electronic devices, headsets, and sophisticated computer equipment typically used in labs, hospitals, server rooms, FAA flight towers, 9-1-1 dispatch operations, mission-critical call centers—even in theaters and casinos—contain microelectronic parts that are highly sensitive to minute changes in electrical current.

So sensitive, in fact, that they can be damaged—and data compromised, if not lost or destroyed—by a static discharge as low as 20 volts. Well below the human threshold for perception.

We’ve all, at one time or another, been slowed down, laid-up, or knocked out by a cold. A static discharge of 20 volts is about as perceptible as breathing the germs that cause the common cold. We don’t know they are there—until……….

Why is Static-Control Flooring Needed?

When we walk on certain floors, the friction between the soles of our shoes and the floor generates a static charge.* This static charge stays in place, on the surface of our body, until we touch something, then it jumps or discharges to that person or object.

This release of electricity is called an electrostatic discharge, or ESD. When static discharges to a static-sensitive electronic component, the sudden rush of electrical current can damage or destroy its internal circuitry.

Walking Body Voltage
When people walk, the friction (or contact and separation) between the soles of their shoes and the floor generates static electricity.

* The voltage and polarity of a static charge is determined by various factors, including the force of friction, triboelectric properties of the materials, relative humidity, etc.

In most workplace environments, the static generated when people walk is the biggest contributor to random ESD events (or problems caused by electrostatic discharge). For this reason, a static-protective floor—or an ESD floor/footwear combination—is the cornerstone of any effective static-control program.

Section 2

How Does Static-Control Flooring Work?

An effective static-control floor performs two separate, equally important functions:

  1. Provides a traceable path to ground;
  2. Inhibits static generation, meaning the floor prevents static from building on people as they walk.

Note: Grounding and conductivity differ from static generation. A grounded/conductive floor can still generate static charges.

Understanding and adhering to these basic requirements is anything but simple.

Some so-called “antistatic” floors do not provide a path to ground.

Commercial 3.5 kV carpet, called antistatic or computer-grade carpet, will generate charges no higher than 3500 volts. This type of carpet gets its antistatic properties from topically-applied sprays or special fiber chemistry buried inside the yarn bundles.

Low kV carpet fibers do not make electrical contact with shoe soles, so the carpet cannot dissipate static charges, and cannot be grounded. Low kV floors merely reduce the amount of static that occurs when shoe soles contact the surface of the carpet.

Designed to prevent nuisance static and nothing more, 3kV antistatic carpet is good only for reducing the ouch when people touch metal objects like a doorknob. A 3.5 kV floor is neither intended nor warranted for reducing charges to the minute thresholds necessary to protect ultra-sensitive electronics.

Low-kV Carpet Tile

Some very good static-control floors generate charges.

Many perfectly good static-protective floors fail to meet the second requirement: preventing charge generation.

Low charge-generating materials do not generate static when people walk on the floor.

Image showing a female walking across the floor with the static generated as she walks represented by little red dots and yellow glow around her shoes. The image is labelled Low Charge Generation Floor - Generates <20 V of static as she walksThe carbon particles embedded in conductive vinyl tile, for instance, are distributed across the surface and through the thickness of each tile, creating an electrical pathway to ground.

However, whether or not it has conductive veins on its surface, vinyl is not a low charge-generating material. To prevent static, conductive vinyl must be used in combination with special static-protective footwear; otherwise, when people walk, a conductive (or static-dissipative) vinyl floor will generate static.

This doesn’t mean vinyl is a poor option for every application. It does mean, unless footwear controls are in place, requiring every person who comes through the space to wear special, static-protective footwear—and these mandates are diligently enforced—conductive vinyl will not prevent static and won’t protect equipment from damage caused by static discharge.

Section 3

How Does a Static-Control Floor Provide a Path to Ground?

In the manufacturing process, ESD floor tiles are loaded with conductive elements, such as carbon, graphite or particles coated with metals, that provide electrical conductivity. When the floor becomes electrically charged, these conductive elements act as an electrical chain, conducting electricity from the surface of the floor through its entire thickness. Static-control flooring is installed over an electrically conductive underlayment, such as conductive copper foils or carbon-loaded adhesive. The underlayment forms a conductive ground plane that unifies all the contiguously-installed tiles in the room.

Copper grounding strips, attached to the underlayment, are connected to either an electrical outlet or an earth ground such as a steel I-beam or a grounding rod. This electrical connection allows static to complete its circuit and flow safely to ground.

ESD flooring demo

The static generated when people walk on the ESD floor flows at a controlled rate through the conductive elements in the floor, across the underlayment, to the copper strips, to ground.

Instead of remaining on the floor’s surface or moving through humans to whatever they touch, static is drawn downward, toward ground, where it can no longer wreak havoc.

Note: An ESD floor can be grounded, yet fail to provide a safe pathway to ground. How is this possible? Because electricity always seeks its easiest path to ground. If the floor’s surface is more conductive than the underlying adhesive, currents may bypass the adhesive, preferring to cut across the surface of the floor, presenting a possible safety hazard.

Section 4

Testing the Electrical Resistance of Flooring Materials

To measure the resistance characteristics of a flooring material, we use ANSI STM7.1. Using two five-pound NFPA probes, this test measures resistance across the surface of a grounded floor tile or flooring material. To meet the ANSI/ESD standard S20.20, the material must measure below 1 x 10E9 ohms.

Image showing a simple set up of the point to point and point to ground resistance tests.

A minimum resistance is not specified in the standard, because S20.20 requires the use of conductive footwear, with built-in resistors measuring at least 750,000 ohms (7.5 x 10E5). The resistors protect the wearer from electrical shocks, by compensating for an overly conductive floor. However, many testing devices trigger a failure mode if the footwear measures below 750,000 ohms, meaning the protective gateway is insufficient, in which case the wearer would not be allowed on the floor.

Visit our Video Library

To meet Motorola R56 and FAA 019f, the grounding standards for 9-1-1 dispatch areas, telecommunications spaces, and FAA flight towers (where people wear regular shoes without built-in resistors), flooring materials must measure above 1 x 10E6 ohms. This minimum threshold is intended to protect personnel from stray voltages that could cause personal injury on an overly conductive floor.

Q: Why would a person wearing regular shoes be potentially at risk walking on an ESD floor in a telecommunications space?

Unlike controlled environments in electronics manufacturing, spaces like 9-1-1 dispatch areas and flight towers do not have control over footwear or footwear conductivity requirements. This means, people walking in these areas are not screened—as they are in electronics facilities—to determine if their footwear might be too conductive to interact with the environment.

An example of footwear that could be too conductive are leather shoes worn on a wet day. When leather, normally an insulator with no conductivity, absorbs water, it becomes highly conductive. If the wearer happens to step in a puddle on the way to work, the wet shoe would direct any electrical current from its sole to the wearer’s skin. For this reason, the static-control floor should provide intrinsic electrical resistance to compensate for the possibility of a person wearing shoes that are too conductive or deciding to kick off his/her shoes while working in the environment.

Selecting a Static-control Floor
Get the essential tools for specifying and selecting an ESD floor. FREE in our short, but comprehensive visual e-guide.
✓ Specification checklist;
✓ visual selector guide;
✓ walking body voltage/low static generation;
✓ resistance requirements and testing;
✓ ESD flooring comparison;
✓ industry standards & test methods;
✓ key ESD terms
Start your ESD journey today!
Get my FREE Flooring Selector Guide

Low Charge Generation: Inhibiting Walking Body Voltage

To dissipate static, or draw static charges away from people or objects, the floor in any static-sensitive environment must be grounded. For electronics manufacturing applications that require the use of ESD footwear it’s fine to use charge-generating flooring materials like conductive vinyl. The carbon veins in conductive vinyl tiles form an electrical bond with the conductive materials in ESD footwear, preventing static from building as people walk.

To eliminate charges in spaces such as mission-critical call centers, flight towers, or 9-1-1 dispatch operations, where people wear regular street shoes, the floor must also prevent static charges from accumulating when people walk on the floor; we call these charges “walking body voltage,” and the materials that prevent walking body voltage “low generating materials.”

Command Center With a Conductive Floor that Generates Static

Command Center Sequence 1

Command Center With a Low Charge-Generating ESD Floor

Command Center Sequence 2

Triboelectric Propensity and Charge Generation

The frictional force (contact and separation) between two materials creates a triboelectric—or static—charge. The polarity (whether a material takes on a positive or negative charge) is determined by the relative properties of the two materials—or which material is more apt to accept or give up electrons. How the materials interact, as well as environmental conditions, such as humidity, also contribute to the effects of triboelectrification.

The chart below ranks materials according to their propensity to become positively or negatively charged.

Types and means of charge

Why Do Some Static-Control Floors Generate Less Static Than Others?

The ability of flooring material to inhibit static is determined by the triboelectric effects of the material, the way the floor is manufactured, and how the flooring material interacts with the composition of the particular shoes a person is wearing.

When two dissimilar materials are rubbed together they generate static. Conductive vinyl, for instance, is comprised primarily of ordinary static-generating plastic compounds, mainly polyvinyl chloride (PVC), with a small distribution of carbon or graphite particles. People wearing ordinary footwear (street shoes) will generate significant static charges while walking on conductive vinyl.

Every documented study has shown vinyl to generate 8 to 10 times the amount of static generated by the same person walking on ESD rubber or static-dissipative carpet tiles.

The corollary is also true: materials with similar triboelectric properties generate minimal static when they interact. The base compound used in two-layer conductive rubber sufficiently resembles the material composition of most shoe soles, so that when people walk, wearing almost any type of footwear, a conductive rubber floor will not generate a charge. Numerous studies conducted by independent labs, such as Fowler Labs and MIT Lincoln Laboratories, have confirmed that static-control rubber is a low-generating material, regardless of footwear.

Chart - Body Voltage Generation

Charge generation doesn’t make conductive vinyl a poor choice for static-control flooring. It does mean that vinyl ESD floors should always be used in conjunction with static-control footwear. A conductive vinyl floor will prevent static ONLY if protocols are in place mandating that, at all times, any and everyone on the floor must wear static-control footwear—such as heel straps, conductive shoe covers, or ESD shoes.

* In environments, such as server rooms, 9-1-1 dispatch operations, flight towers or mission-critical data centers, where people wear a variety of non-ESD footwear, conductive vinyl is not a viable option; conductive rubber or static-dissipative carpet are the best ESD flooring choices.

Walking Body Voltage/Charge Generation Test

ANSI/ESD 97.2 Measuring of Voltage on a Person While Walking on a FloorBecause charge generation is affected by multiple variables, triboelectric effects are hard to predict. The only way to predict whether a floor will sufficiently inhibit static is by testing the flooring system—that is, testing the floor in conjunction with the subject wearing all types shoes to be worn in the environment.

To evaluate the potential for charge generation, we use ANSI/ESD Test Method 97.2-2014.

This test stipulates that—within reason—the subject is to wear the exact types of shoes that will be worn by people walking on the static-control floor. This means, if anyone in the environment will be wearing street shoes, then the floor should be tested for charge generation on people wearing a variety of street shoes—e.g., athletic shoes, shoes with leather soles, and so on.

* It’s important to keep in mind this lesson from basic electrostatic physics: degree of conductivity is not a factor in whether a material tribo-charges with another material.

Nevertheless, many ESD flooring manufacturers base their static-control claims only on levels of conductivity—even though these charge generation requirements have been in place in ANSI/ESD standards since 2014.

Eliminating Walking Body Voltage

It’s about low charge generation—not conductivity.

Scientific Fact: Level of conductivity—high or low—has no bearing on charge generation. The ability of a static-control floor to prevent static in a particular environment has to do with the material, footwear, and environmental conditions.

Bottom Line: a highly conductive floor does not guarantee low static generation.

Visit our Video Library

Section 5

How Do I Choose a Static-Control Floor?

Almost every conceivable floor-covering material, including epoxy, vinyl, and rubber, can be manufactured to provide some static-dissipative or antistatic (low charge-generating) properties. The choice of flooring materials should be based on the electrical code, best practice, industry standards and requirements for the specific application, the demands and constraints of the environment, and buyer goals and objectives.

Staticworx Flooring Types

Different applications often require different flooring materials. A floor that works well in electronics manufacturing, with protocols mandating the use of special ESD footwear, will likely not work in a mission-critical space with people wearing regular street shoes.

A single facility may also benefit from the use of more than one flooring material. Material handling areas, for instance, may call for an ergonomically friendly floor like carpet or rubber, while in the warehouse, where it’s common to transport heavy loads, a hard-surface floor like ESD epoxy might be a better choice.

Before selecting any type of ESD flooring, it is crucial to understand how the floor will interface with its environment and the people working in or moving through the space. To find answers, it’s important to ask relevant questions—and listen closely to the responses.

What Type of Footwear Will be Worn in the Space?

Will people who walk on this floor wear grounded heel or toe straps, static-protective shoe coverings, or conductive shoes?

If the answer is no—which, in most cases, it is—then the grounded floor must provide a combination of conductive elements and the capacity to prevent or inhibit static build-up.

CategoryClass-0Controlled Environments
(ANSI/ESD S20.20)
End-User/Real-World
Maximum allowable resistance0 - ≤ 10E90 - ≤ 10E910E6 - 10E9
EnvironmentControlled/manufacturing ESD-protected areas (EPA) that handle ultra-sensitive devices or will in the futureControlled/manufacturing ESD-protected areas (EPA) that are not Class-0Mission-critical areas that require ESD protection regardless of footwear
Applications-electronics manufacturing service (EMS) facilities
-cleanrooms
-R&D environments
-microelectronics fabrication
-circuit board assembly
-manufacturing test and repair of electronics
-9-1-1 dispatch areas
-data centers
-fight command centers
-networked offices
-hospital/imaging
-control rooms
-labs
-government offices
-server rooms
Flooring options with regular footwearN/A: Regular footwear prohibited; must use ESD footwearN/A: Regular footwear prohibited; must use ESD footwear-EC Rubber
-ESD Carpet
Flooring options with ESD footwear or heel straps-EC Rubber
-ESD Carpet
-Conductive Vinyl
-EC Rubber
-ESD Carpet
-Conductive Vinyl
-Some Conductive Epoxy Coatings
-Plastic Interlocking Conductive Flooring
-EC Rubber
-ESD Carpet
-Conductive Vinyl
-Static-dissipative Vinyl Tile
-Conductive Epoxy Coatings
-Static-dissipative Epoxy Coatings
-Plastic Interlocking Conductive Flooring
-Plastic Interlocking Dissipative Flooring
-Conductive High-pressure Laminate

What is the Environment Like?

Every static-control floor has attributes and drawbacks. ESD epoxy is an extremely hard, durable, high-gloss material, well suited for spaces where forklifts or pallet jacks are commonly used. But sounds echo off the hard surface, creating noise pollution, and epoxy is easily gouged, scratched, marred, and coatings are vulnerable to fading.

Despite its positive ergonomic and charge reduction properties, static-control carpet is also inappropriate in some environments. In heavy-duty manufacturing, for instance, some areas tend to get wet or be contaminated by solder and chemicals. These areas do well with hard-surface flooring materials that are easily cleaned and mopped. Static-control rubber, vinyl, and quartz-filled ESD epoxies are better suited for these wet, high-traffic, messy areas.

Adjacent walkways or cleaner areas in the facility may be carpeted, with special thought and attention paid to layout and design.

CategoryESD Carpet TileESD Solid Vinyl Tile (Conductive)ESD Multi-layer Poured EpoxyInterlocking Plastic FlooringESD Rubber
Ease of finding small partsFairEasyEasyEasyEasy
Slip resistance< 0.6
Meets or exceeds ADA guidelines
< 0.6
Meets or exceeds ADA guidelines
0.4 – 0.6
Depending on texture
0.5 – 0.6< 0.6
Meets or exceeds ADA guidelines
Sound absorptionExcellentPoor to fair 4 dBNot sound resistantPoor to fairExcellent 5 – 19 dB
Anti-fatiguingExcellentNoNoNoGood
VOC compliantYesYes
FloorScore certified
YesYesYes
GREENGUARD certified
Halogen free – no chlorine or other corrosive gases in fireNoNoYesNoYes
Contributes toward LEED creditsYesYesNoYesYes

What are the Performance and/or Maintenance Concerns?

Different floors require different maintenance procedures, which may affect performance—as will neglecting to clean or maintain the floor.

Epoxy
ESD epoxy requires only regular washing, making it easy to maintain, but epoxy coatings are easily scratched or gouged, and epoxy is notoriously difficult to repair. Because it’s nearly impossible to match a newly repaired spot to the original floor, epoxy coatings are difficult to patch.

As an epoxy floor cannot tolerate traffic until it’s fully cured and completely dry, the entire repair area must be shut down during repair/replacement, for one or two days, to accommodate the repair.

Vinyl
ESD vinyl products offer an efficient, cost-effective, durable static-control option. Conductive solid vinyl tile requires minimal maintenance procedures—it’s easily maintained by regular buffing—and because it can be installed over existing surfaces, vinyl is quick and easy to repair, with short downtime.

Staticworx ESD Vinyl Tile vs Offshore Vinyl Tile Some vinyl tiles require frequent application of special dissipative polishes to maintain their performance. Without the application of special waxes, static-control performance degrades—the only way to know if a polish-reliant floor is performing properly is to commit to and carry out frequent ASTM electrical resistance testing. Often, static-dissipative vinyl composition tile (SDT) is not warranted unless the customer regularly reapplies multiple coats of special antistatic floor polish.

Vinyl manufactured offshore should be checked for dimensional stability and size tolerances. Many offshore-sourced tiles are produced with fillers that outgas and lead to shrinkage, creating gaps that look unsightly, and collect contamination and water, causing delamination. To help prevent shrinkage, tiles produced offshore should be installed with epoxy adhesives.

Carpet and Rubber
Static-dissipative carpet and conductive rubber provide excellent long-term static protection and require only simple routine maintenance—vacuuming for carpet; for rubber, washing the floor with a wet mop. Both products are durable and easily repaired, simply by lifting the damaged tile and laying a new tile in its place. Rubber is easily matched and random non-directional (RND) carpet tiles hide wear and can be replaced with no concerns about dye lots.

* When choosing static-control carpet tile always reference application and environment-specific standards like Motorola R56 and FAA 019f. A close technical reading of these industry standards should clearly define the ohms resistance of an appropriate ESD floor.

CategoryESD Carpet TileESD Solid Vinyl Tile (Conductive)ESD Multi-layer Poured EpoxyInterlocking Plastic FlooringESD Rubber
Long-term appearanceGood to excellentExcellent: surface scratches can be removed by abrasive buffingFair: degrades over time, scratches cannot be removedExcellent: surface scratches can be removed by abrasive buffingExcellent
Wear layern/aNo: wear is consistent throughout the thickness of the floorYes: minimalNo: wear is consistent throughout the thickness of the floorNo: wear is consistent throughout the thickness of the floor
Color throughout thickness (helps hide scratches)n/aYesNoYesYes
Color consistency for projects of any sizeYesYesYesNoYes
DurabilityGood to excellentExcellentExcellentExcellentExcellent
Handles/withstands heavy rolling loadsFairExcellentExcellentGoodGood
PSIn/a2500 - < 3000> 3000n/a600 - 800
Ease of rollingFairExcellentExcellentGood to excellentGood to excellent
MaintenanceVacuum and wet extractionSweep, damp mop, and buffSweep and damp mopSweep, damp mop, and buffSweep, damp mop, and buff
Chemical ResistanceFairSuperiorSuperiorSuperiorSuperior
Ease of repairEasiestEasyMost difficultEasyModerate

How Does Electrical Performance of Static-Control Flooring Materials Compare?

Static-Dissipative Carpet Tile
Sweeping fibers from ESD carpet

ESD carpet tiles contain thousands of conductive fibers that sweep static off of shoes and safely discharge it to ground, much the same way small brushes sweep static from paper on high-speed copiers as the paper is fed into the collator.

With ESD carpet tile, a low generating material, it is almost impossible to create a harmful static charge—regardless of footwear. That’s because static charges are ionized at the surface of the carpet and conducted directly to ground through a static-dissipative backing and conductive ground plane created by the conductive underlayment or adhesive system.

Conductive Vinyl
The embedded carbon veins in conductive vinyl look like a spider web on the surface of the tile. These veins provide a very effective path to ground. Because of its negligible triboelectric performance (meaning it doesn’t inhibit charge generation), vinyl works best in applications, such as electronic manufacturing and assembly, where special ESD footwear is required and where foot traffic and access to the space are controlled and monitored.

Static-dissipative vinyl

Unlike conductive vinyl, with embedded carbon veins, most static-dissipative (SDT) vinyl, made from vinyl composition tile (VCT), gets its static-control performance from special waxes or polishes that wear off over time and must be routinely reapplied.

Conductive Rubber
Conductive rubber is a vulcanized two-layer material with static-control properties distributed across the surface and throughout the thickness of the tile. Rubber’s low charge generation is due to its material composition, which has a unique tribo-electric effect when rubbed against other materials.

Like static-dissipative carpet, conductive vinyl, and ESD epoxy, rubber can be grounded. And, like carpet tile, rubber is a low-generating material, well-suited for electronics manufacturing and handling, as well as end-user applications, such as public safety dispatch centers, research labs, and server rooms, where people will typically wear ordinary footwear.

Conductive Epoxy
Prior to 2014, conductive epoxy was a popular ESD flooring option for electronics manufacturing environments. Epoxy is a relatively inexpensive flooring solution. With their hard, rugged surface, epoxy floors allow for easy rolling of heavy carts or forklifts. Epoxy is also cleaned with simple machine-scrubbing and does not require ESD floor finishes or waxes to maintain its performance.

In terms of the need for a low-charging material, however, epoxy is usually a poor choice.

Heel straps wornIn ANSI/ESD S97.2, modified in 2014—a walking body voltage, or charge generation, test performed with special conductive footwear—epoxy floors perform inconsistently. In many cases, ESD epoxy flunks the ANSI/ESD S20.20-2014 charge generation test. Many tests have shown that ESD epoxy will generate charges 3 to 5 times the maximum allowable limit.

With street shoes, ESD epoxy becomes a significant static charge generator and will actually generate more static than conventional flooring.

ESD epoxy should never be used without special footwear. Prior to installation, ESD epoxy should be carefully tested and qualified—in conjunction with whatever footwear will be worn by people walking through the space—for compliance with ANSI/ESD S20.20 charge generation requirements.

CategoryESD Carpet TileESD Solid Vinyl Tile (conductive)ESD Multi-layer Poured EpoxyInterlocking Plastic FlooringESD Rubber
Inhibits static with ordinary footwear; per ASHRAE, the upper limit for the environment is 500 V maximumYes: < 400 V maximumNo: > 3500 VNo: > 3500 VNo: > 3500 VYes: < 400 V maximum
Meets standard ANSI/ESD S20.20 for electrical resistanceYes, when using any ESD footwearYes, when using any ESD footwearYes, depending on type of ESD footwearYes, depending on type of ESD footwearYes, when using any ESD footwear
Class-0 qualifiedYes, depending on type of ESD footwearYes, depending on type of ESD footwearNoNoYes, when using any ESD footwear

Permanent Static Protection

When evaluating any ESD floor, buyers should determine whether or not the floor will provide permanent static protection. The static-control properties of some floors wear off, requiring periodic buffing or waxing to maintain performance.

As noted above, some SDT vinyl tiles have a negligible effect on static without the frequent application of special antistatic floor finishes. Any interlocking or vinyl flooring with manufacturer’s specifications claiming it has been treated with a special low-maintenance coating should be carefully evaluated for walking body voltage; and the test should be performed with different types of footwear. Because they are not low-charging materials, factory-applied coatings rarely meet walking body voltage standards.

In mission-critical areas like flight-control towers and power plants that must be fully functional 24/7, buyers should consider whether it’s prudent to install a floor that requires periodic rejuvenation. Remember: static is invisible. If a floor requires waxes or sprays to maintain its electrical properties, it will be impossible to know precisely when the floor has stopped performing.

Buyers must also decide whether or not they’re prepared to pay the additional cost—which over time can be substantial—of maintaining the conductivity/static-preventive properties of their floor.

Which Static-Control Floor Do You Recommend?

The definition of the ideal static-control floor varies, depending upon the application, the environment, and the budget. While the initial cost of some flooring materials is low, frequent or difficult maintenance procedures or costly repairs, requiring work areas to be shut down for several days or a week, can add up.

When evaluating costs, it’s smart to factor not only the initial material costs but the total cost of ownership into the budget.

CategoryESD Carpet TileESD Solid Vinyl Tile (Conductive)ESD Multi-layer Poured EpoxyInterlocking Plastic FlooringESD Rubber
Total cost of ownership (includes material, installation, and ongoing maintenance)LowModerateLow to moderateHighestLowest
Cost of materialLow to moderateLowestLowHighestModerate to high
InstallationEasiest and fastestEasy and fastDifficultTime consumingModerate and fast
Cost of maintenanceLow to moderateModerateLow
Note: shine cannot be restored once surface is scratched
ModerateLowest

Today, there are static-control floors in attractive styles and designs to meet every flooring requirement and every budget. As with any specialty product, it’s easy to be confused by technical jargon, marketing lingo, and complicated industry standards and test methods.

Before making any decisions, it’s wise to identify reputable suppliers who:

  • offer more than one form of ESD flooring;
  • reference appropriate industry standards;
  • provide objective third-party evidence of performance—such as lab reports and other data specific to your application;
  • offer post-installation testing and written certification, after installation, that the floor meets the specific standards of the application.

Further Reading

What is ESD?A Guide to ESD Flooring SelectionSelecting and Specifying an ESD FloorTechnical InformationInstallation & Maintenance

  • 7 Myths About Static-Control Flooring

  • Guide: Home
  • Flooring Specification Checklist
  • ESD Flooring Decision Tree
  • Walking Body Voltage
  • Resistance Requirements and Testing
  • Comparing Types of Flooring
  • Industry Standards and Test Methods

  • 7 Common Mistakes Selecting an ESD floor
  • Avoiding Costly Failures: What to Know When Specifying ESD Flooring
  • Choosing ESD Flooring for:
    • Mission-critical Spaces
    • Electronics Manufacturing and Handling Applications
    • Cleanrooms
  • ESD Footwear: What Is It and When Is It Necessary?
  • Facility Managers’ Guide to Selecting ESD Flooring
  • The Need for Due Diligence in Specifying Static-Free Flooring
  • Standard of Care for Specifying Floors in Mission-Critical Spaces
  • Static-Control Footwear for Electronics Manufacturing and Handling Applications
  • Understanding the Hidden Costs of ESD Flooring

  • The Case Against Highly Conductive ESD Flooring
  • Conductive vs Dissipative: Does It Matter?
  • Electrical Resistance in Mission-Critical Spaces
  • ESD Standards and Test Methods
  • Resistance, Resistivity, and Real World Application
  • What is Electrical Resistance?
  • What is Walking Body Voltage?

  • Conductive Adhesive
  • Glue-Free ESD Floors
  • How to Ground an ESD Floor
  • How to Install an ESD Floor
  • Installing a New ESD Floor Over an Existing Floor—without shutting down the space
  • Maintaining ESD Floors

With Staticworx ESD flooring, you never have to choose between performance and aesthetics. Our beautiful, high quality ESD carpet tile, vinyl, EC rubber tile and sheet goods, and ESD epoxy floors are as beautiful as they are functional.

Call us: 617-923-2000
Tell Us About Your Project

Resources

Article Hub

Guide to ESD Flooring Selection

FAQs

Video Library

Glossary

Standards and Test Methods

Footer

Vermont Collection/ESD Planx

Staticworx Vermont Collection

Staticworx Vermont Collection

Visit our main site to learn more

Share This

Get in touch

Call: 617-923-2000
Email: info@staticworx.com
Contact Us

Connect with Us

  • Twitter
  • LinkedIn
  • Instagram
  • Pinterest
  • YouTube
  • SoundCloud

Subscribe for news/updates

Sign up for our newsletter and occasional updates.
Subscribe to Our Newsletter

Why Choose Staticworx?

Find out why our clients trust us.
Learn more

Do you have an ESD flooring project you’d like to discuss?
Share Your Project

Flooring Products

•Rubber •Carpet •Vinyl Tile •Epoxy Coatings •Snap-together, adhesive-free tiles •Conductive Adhesives • Adhesive-free underlayments •Static-control maintenance supplies •Test equipment

Request a sample

The FAA has updated its standard for facilities and electronic equipment. StaticWorx meets all requirements for ESD flooring.

This site is protected by copyright and trademark laws under both United States and International law.
All rights reserved. © 2008 - 2020, StaticWorx® Grounded Solutions™ · Privacy Policy

This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Privacy policy Cookie settings ACCEPT REJECT
Privacy & Cookies Policy

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Analytics

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.

Advertisement

Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.

Functional

Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.

Save & Accept